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ABSTRACT

Mobile devices are increasingly being relied on for services that
go beyond simple connectivity and require more complex process-
ing. Fortunately, a mobile device encounters, possibly intermit-
tently, many entities capable of lending it computational resources.
At one extreme is the traditional cloud-computing context where a
mobile device is connected to remote cloud resources maintained
by a service provider with which it has an established relation-
ship. In this paper we consider the other extreme, where a mobile
device’s contacts are only with other mobile devices, where both
the computation initiator and the remote computational resources
are mobile, and where intermittent connectivity among these enti-
ties is the norm. We present the design and implementation of a
system, Serendipity, that enables a mobile computation initiator to
use remote computational resources available in other mobile sys-
tems in its environment to speedup computing and conserve energy.
We propose a simple but powerful job structure that is suitable for
such a system. Serendipity relies on the collaboration among mo-
bile devices for task allocation and task progress monitoring func-
tions. We develop algorithms that are designed to disseminate tasks
among mobile devices by accounting for the specific properties of
the available connectivity. We also undertake an extensive eval-
uation of our system, including experience with a prototype, that
demonstrates Serendipity’s performance.
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C.2.4 [Computer-Communication Networks ]: Distributed Sys-
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1 Introduction
Recent years have seen a significant rise in the sophistication of
mobile computing applications. Mobile devices are increasingly
being relied on for a number of services that go beyond simple con-
nectivity and require more complex processing. These include pat-
tern recognition to aid in identifying snippets of audio or recogniz-
ing images whether locally captured or remotely acquired, reality
augmentation to enhance our daily lives, collaborative applications
that enhance distributed decision making and planning and coor-
dination, potentially in real-time. Additionally, there is potential
for mobile devices to enable more potent "citizen science" appli-
cations that can help in a range of applications from understanding
how ecosystems are responding to climate change1 to gathering of
real-time traffic information.2

Mobile applications have become an indispensable part of ev-
eryday life. This has been made possible by two trends. First,
truly portable mobile devices, such as smartphones and tablets, are
increasingly capable devices with processing and storage capabili-
ties that make significant step improvements with every generation.
While power in mobile devices will continue to be constrained rela-
tive to tethered devices, advances in battery and power management
technology will enable mobile devices to manage longer-lived com-
putations with less burden on available power [22]. A second trend
that is directly relevant to our work is the availability of improved
connectivity options for mobile devices. These have enabled appli-
cations that transcend an individual device’s capabilities by making
use of remote processing and storage.

Fortunately, a mobile device often encounters, possibly inter-
mittently, many entities capable of lending it computational re-
sources. This environment provides a spectrum of computational
contexts for remote computation in a mobile environment. An ul-
timately successful system will need to have the flexibility to use a
mix of the options on that spectrum. At one extreme of the spec-
trum is the use of standard cloud computing resources to off-load
the "heavy lifting" that may be required in some mobile applica-
tions to specially designated servers or server clusters. A related
technique for remote processing of mobile applications proposes
the use of cloudlets which provide software instantiated in real-
time on nearby computing resources using virtual machine tech-
nology [30]. Likewise, MAUI [12] and CloneCloud [11] automat-
ically apportion processing between a local device and a remote
cloud resource. In this paper we consider the other spectrum ex-
treme, where a mobile device’s contacts are only with other mobile
devices, where both the computation initiator and the remote com-

1See http://blogs.kqed.org/climatewatch/2011/01/29/citizen-
science-the-iphone-app/
2See http://www.crisscrossed.net/2009/08/31/citizen-scientist-
how-mobile-phones-can-contribute-to-the-public-good/
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putational resources are mobile, and where intermittent connectiv-
ity among these entities is the norm.

We investigate the basic scenario where an initiator mobile de-
vice needs to run a computational task that exceeds the mobile de-
vice’s ability and where portions of the task are amenable to remote
execution. We leverage the fact that a mobile device within its in-
trinsic motion pattern makes frequent contact with other mobile de-
vices that are capable of providing computing resources. Contact
with these devices can be intermittent, limited in duration when it
occurs, and sometimes unpredictable. The goal of the mobile de-
vice is to use the available, potentially intermittently connected,
computation resources in a manner that improves its computational
experience, e.g., minimizing local power consumption and/or de-
creasing computation completion time. The challenge facing the
initiator device is how to apportion the computational task into sub-
tasks and how to allocate such tasks for remote processing by the
devices it encounters.

1.1 Related Work

Our work can be viewed as enabling a truly general vision of cyber
foraging [4, 5] which envisions mobile applications "living off the
land" by exploiting nearby computational resources. At the time of
the original conception of the cyber foraging idea almost a decade
ago [35] it was hard to imagine the compute power of today’s mo-
bile devices (smartphones and tablets) and the vision was, there-
fore, necessarily limited to constant connectivity to infrastructure-
based services. Today, however, it is possible to extend the flexibil-
ity of this vision to include "foraging" of the available resources in
other mobile devices as we propose to do in this work.

Our work also leverages recent advances in the understanding
of data transfer over intermittently-connected wireless networks
(also known as disruption-tolerant networks or opportunistic net-
works). These networks have been studied extensively in a variety
of settings, from military [26] to disasters [15] to the developing
world [27]. These settings share the characteristic that fixed infras-
tructure is unavailable, highly unreliable, or expensive. Further, the
communication links are subject to disruptions that mean network
partitions are common.

Our work is also related to the efforts at developing useful ap-
plications over intermittently-connected mobile and wireless net-
works. Examples of this work include the work by Hanna et al.
which develops mobile distributed information retrieval systems
[16], and the work by Fall et al. on an architecture for disas-
ter communications response [15] with a specific focus on situ-
ational awareness. In this latter work the authors propose an archi-
tecture that contains infrastructure-supported servers, mobile pro-
ducer/consumer nodes and mobile field servers. Related, the Hastily
Formed Networks (HFN) project [14] describes potential applica-
tions in disaster settings that match well with our vision requiring
computation, including situational awareness, information sharing,
planning and decision making.

Our work is also closely related to systems that use non-dedicated
machines with cycles that are donated and may disappear at any
time. In this vein, our work takes some inspiration from the Con-
dor system architecture [31]. Our work also resembles in part those
distributed computing environments that have well-connected net-
works but unreliable participation in the computation, such as those
seen in voluntary computing efforts where users can contribute
compute cycles, but may also simply turn off their machines or
networks at will in the middle of a computation. Examples of these
systems include BOINC [2]; other examples are SETI@home [3],
and folding@home[6], all leveraging willingness on the part of in-
dividuals to dedicate resources to a large computation problem.

More recently, the Hyrax project envisions a somewhat similar ca-
pability to opportunistically use the resources of networked cell-
phones [25].

1.2 Paper Outline

The remainder of this paper is organized as follows: we start with
the discussion of the problem context and the design challenges in
Section 2; we describe the design of a job model and the Serendip-
ity system in Section 3; the task allocation algorithms are presented
in Sections 4 and 5; we describe how to enable energy-aware com-
puting in Section 6; we undertake an extensive evaluation of our
system on Emulab in Section 7; the implementation and evaluation
of Serendipity on mobile devices are presented in Section 8; We
conclude this paper and discuss our future work in Section 9.

2 Problem Context and Design Challenges
Network Model: We focus on a network environment that is com-
posed of a set of mobile nodes with computation and communica-
tion capabilities. The network connectivity is intermittent, leading
to a frequently-partitioned network. Every node can execute com-
puting tasks, the number of which is constrained by its resources,
such as processor capability, memory, storage size, and available
energy. The period of time during which two nodes are within
communication range of each other is called a contact. During a
contact nodes can transfer data to each other. Both the duration
and the transfer bandwidth of a contact are limited. There are some
variants of the general network setting. For some mobile devices,
a low-capacity control channel (e.g., over satellite link) is available
for metadata sharing. In addition, in some special networks, such as
networks with scheduled robotic vehicles or UAVs, the node mobil-
ity patterns are predictable and, thus, their future contacts are also
predictable. All these variants are taken into consideration in our
design.
Remote computing usually involves the execution of computation-
ally complex jobs through the cooperation among a set of devices
connected by a network. A major class of such jobs, supported by
mainstream distributed computing platforms such as Condor [31],
can be represented as a Directed Acyclic Graph (DAG). The ver-
tices are programs and the directed links represent data flows be-
tween two programs. A traditional distributed computing platform
maps the vertices to the devices and the links to the network so that
all independent programs are executed in parallel and they trans-
fer the output to their children. As a variant of such computing
platforms, MAUI [12] and CloneCloud [11] have a simple network
composed of a mobile device and the cloud.
Design Challenges: The intermittent connectivity among mobile
devices poses three key challenges for remote computing. First, be-
cause the underlying connectivity is often unknown and variable, it
is difficult to map computations onto nodes with an assurance that
the required code and data can be delivered and the results are re-
ceived in a timely fashion. This suggests a conservative approach
to distributing computation so as to provide protection against fu-
ture network disruptions. Second, given that the network band-
width is intermittent, the network is more likely to be a bottleneck
for the completion of the distributed computation. This suggests
scheduling sequential computations on the same node so that the
data available to start the next computation need not traverse the
network. Third, when there is no control channel, the network can-
not be relied upon to provide reachability to all nodes as needed
for coordination and control. This suggests maintaining local con-
trol and developing mechanisms for loose coordination. Besides
the intermittent connectivity, the limited available energy imposes
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Figure 1: A job model for DTNs is a Directed Acyclic Graph (DAG),
the vertices of which are PNP-blocks. Every PNP-block consists of a
pre-process, a post-process and n parallel tasks.

another extra constraint on the remote computing among mobile
devices.

3 Serendipity System Design
3.1 A Job Model for Serendipity

Our basic job component is called a PNP-block. As shown in Fig-
ure 1, a PNP-block is composed of a pre-process program, n par-
allel task programs and a post-process program. The pre-process
program processes the input data (e.g., splitting the input into mul-
tiple segments) and passes them to the tasks. The workload of every
task should be similar to each other to simplify the task allocation.
The post-process program processes the output of all tasks; this in-
cludes collecting all the output and writing them into a single file.

The PNP-block design simplifies the data flow among tasks and,
thus, reduces the impact of uncertainty on the job execution. All
pre-process and post-process programs are executed on one ini-
tiator device, while parallel tasks are executed independently on
other devices. The communication graph becomes a simple star
graph. The data transfer delay can be minimized as the initia-
tor device can simply choose nearby devices to execute tasks. In
contrast, it is much more difficult for a complicated communica-
tion graph, such as the complete bipartite graph used in MapRe-
duce [13], to achieve low delay among intermittently connected
mobile devices because the optimization problem associated with
mapping the general graph onto them is complex.

The single PNP-block job comprises an important class of dis-
tributed computing jobs often called embarrassingly parallel and
useful in many applications, among which are SETI@home [3]
and BOINC [2]. All jobs are graphically represented by a DAG
of PNP-blocks, providing as much computational expressiveness
as a regular DAG. For instance, the MapReduce model [13] can be
implemented with two sequentially connected PNP-blocks, corre-
sponding to the map phase and the reduce phase, respectively.

3.2 Serendipity System

Figure 2 shows the high-level architecture of Serendipity. A Serendip-
ity node has a job engine process, a master process and several
worker processes. The number of worker processes can be config-
ured, for example, as the number of cores or processors of the node.
Each node constructs its device profile and, then, shares and main-
tains the profiles of encountered nodes. A node’s device profile in-
cludes its execution speed which is estimated by running synthetic
benchmarks and its energy consumption model using techniques
like PowerBooter [34]. These device profiles when combined with
the jobs’ execution profiles are used to estimate the jobs’ execution
time and energy consumption on every node, essential for task al-
location. Serendipity also needs access to the contact database, if
available, for better task allocation.

To submit a job, a user needs to provide a script specifying the
job DAG, the programs and their execution profiles (e.g., CPU cy-
cles) for all PNP-blocks and the input data to the job engine. Con-
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Figure 2: High-level Architecture of Serendipity. After receiving a job
(1), the job engine constructs the job profile (2) and starts a job initiator,
who will initiate a number of PNP-blocks and allocate their tasks (3).
The job engine disseminates the tasks to either local or remote masters
(4). After a worker finishes a task (5), the master sends back the results
to the job initiator (6a, 6b), who may trigger new job PNP-blocks (3).
After all results are collected, the job initiator returns the final results
(7a, 7b) and stops.

structing accurate execution profiles of programs is a challenging
problem and out of the scope of this paper. We simply follow the
offline method used by both MAUI [12] and CloneCloud [11], i.e.,
running the programs multiple times with different input data.

The script is submitted to the job profiler for basic checking and
constructing a complete job profile (i.e., tasks’ execution time and
energy consumption on every node) using its execution profiles and
the device profiles. The generated job profile will be used to decide
how to allocate its tasks among mobile devices.

If everything is correct, the job engine will launch a new job
initiator responsible for the new job. It stores the job informa-
tion in the local storage until the job completes. All PNP-blocks
whose parents have completed will be launched by running their
pre-process programs on a local worker and assigning a TTL (i.e.,
time-to-live), a priority and a worker to every task. The TTL spec-
ifies the time before which its results should be returned. If a task
misses its TTL, it should be discarded, while a copy will be exe-
cuted locally on the initiator’s mobile device. The priority deter-
mines the relative importance of a job’s different tasks. Section 5
will discuss how to assign the priorities.

Based on the consideration of task allocation and security, the
assigned worker can be a single node, a set of candidate nodes,
or a wildcard. In fact, only in the specific scenario that the fu-
ture contacts are predictable while nodes have a control channel to
timely coordinate the remote computing, the job initiator will use
the global information to allocate tasks and assign a specific node
for each task, which will be discussed in Section 4.1. Otherwise,
the job initiator only specifies the set of candidate nodes it trusts
and lets the job engine allocate the tasks. Finally, these tasks are
sent to the job engine for dissemination.

The job engine is primarily responsible for disseminating tasks
and scheduling the task execution for the local master. When two
mobile nodes encounter, they will first exchange the metadata in-
cluding their device profiles, their residual energy and a summary
of their carried tasks. Using this information, the job engine will
estimate whether it is better to disseminate a task to the encountered
node than to execute it locally. Such a decision is based on the goal
of reducing the job completion time (to be discussed in Section 4)
or conserving the device energy (to be discussed in Section 6).

To schedule the task execution, the job engine first determines
the job priority. Currently we use the first-in-first-serve policy. But
it can be easily replaced by any arbitrary policy. For example, the
job from a node that helps other nodes execute a lot of tasks is
assigned a high priority. For the tasks of the same job, they are
scheduled according to their task priorities.
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Figure 3: The PNP-block completion time is composed of a) the time
to disseminate tasks, b) the time to execute tasks and c) the time to
collect results, in addition to the time needed to execute pre-process
and post-process programs.

The master is responsible for monitoring the task execution on
workers. After receiving a task from the job engine, it starts a
worker for it. When the task finishes, the output will be sent back
to the job initiator using the underlying routing protocols like Max-
Prop [7]. If the task throws an exception during the execution, the
master will report it to the job initiator who will terminate the job
and report to the user.

In this paper, we assume that all nodes are collaborative and
trustworthy. However, there are also scenarios that some nodes are
selfish (i.e., refusing to help other nodes) or even malicious (i.e.,
distorting the results). To motivate the selfish nodes, we can use
some token-based incentive mechanism [24], making use of no-
tional credit to pay off nodes for executing tasks. To protect the
remote computing from malicious nodes, we can use reputation-
based trust [8] in which nodes construct and share nodes’ reputation
information.

4 Task Allocation for PNP-blocks
One important goal of remote computing is to improve the perfor-
mance of computationally complex jobs, especially when mobile
nodes have enough energy. In this section, we will design effi-
cient task allocation algorithms to minimize the job completion
time. Specifically, since PNP-blocks are the basic blocks to al-
locate tasks, we will focus on the task allocation for PNP-blocks
in various network settings. The problem of task scheduling for
multi-processor systems [10, 18] is somewhat related to our task
allocation problem. That work, however, does not deal with inter-
mittent connectivity and cannot, therefore, be applied directly to
our problem.

Figure 3 illustrates the timing and components of a PNP-block
execution. Along the x-axis are the k remote nodes that will exe-
cute the parallel tasks of the block. Along the y-axis is a depiction
of the time taken at each node to receive disseminated tasks from
the initiator, execute those tasks, and provide the result collection
back to the initiator. As illustrated, the time for each remote node
to receive its disseminated tasks may vary, depending on the avail-
ability and quality of the network between the initiator and the re-
mote node. When n tasks of a PNP-block are allocated to k nodes,
each node will execute its assigned tasks sequentially, again taking
a variable amount of time. After execution of all assigned tasks
in the block, the node will send results back to the initiator, with
time again being dependent on the network between the initiator
and the remote node. Our goal for the task allocation is to reduce
the completion time of the last task which equals to the PNP-block
completion time.

We consider the design of task allocation algorithms in the con-
text of three models with different contact knowledge and control
channel availability assumptions.

4.1 Predictable Contacts with Control Channel

We first consider an ideal network setting where the future contacts
can be accurately predicted, and a control channel is available for
coordination. The performance in this type of scenarios represents
the best possible performance of task allocation that is achievable
among intermittently connected mobile devices. It is useful to iden-
tify the fundamental benefits and limits of Serendipity.

With future contact information a Dijkstra’s routing algorithm
for DTNs [20] can be used to compute the required data transfer
time between any pair of nodes given its starting time. With the
control channel the job initiator can obtain the time and number of
tasks to be executed on the target node with which to estimate the
time to execute a task on that node. Therefore, given the starting
time and the target node, the task completion time can be estimated.

Using this information, we propose a greedy task allocation al-
gorithm, WaterFilling, that iteratively chooses the destination node
for every task with the minimum task completion time (see Algo-
rithm 1).

Algorithm 1 Water Filling
1: procedure WATERFILLING(T , N ) � T is task set; N is node set.
2: current← currentTime();
3: rsv← getTaskReservationInfo();
4: inputSize← getTaskInputSize(T );
5: outputsize← estimateOutputSize(T );
6: queue← initPriorityQueue();
7: for all n ∈ N do
8: arrivalT← dijkstra(this, n, current, inputSize);
9: exeT← estimateTaskExecutionTime(n,t); � t ∈ T

10: tfinishT← taskFinishTime(rsv[n], arrivalT, exeT);
11: completeT← dijkstra( n, this, tfinishT, outputSize);
12: queue.put({n, arrivalT, exeT, completeT});
13: end for
14: for all t ∈ T do
15: {n, arrivalT, exeT, receiveT}← queue.poll();
16: updateReservation(rsv[n], t, inputSize, arrivalT, exeT);
17: send(n, t);
18: arrivalT← dijkstra(this, n, current, inputSize);
19: tfinishT← taskFinishTime(rsv(n), arrivalT, exeT);
20: completeT← dijkstra( n, this, tfinishT, resultSize);
21: queue.put({n, arrivalT, exeT, receiveT});
22: end for
23: reserveTaskTime(rsv);
24: end procedure

For every task, the algorithm first estimates its task dissemina-
tion time to every node. With the information of the tasks to be
executed on the destination node and the estimated time to execute
this task, it is able to estimate the time when this task will finish.
Given that time point, the time when the output is sent back can
also be computed. Among all the possible options, we choose the
node that achieves the minimum task completion time to allocate
the task. The allocation of the next task will take the current task
into account and repeat the same process. Finally, the job initiator
will reserve the task execution time on all related nodes, which will
be shared with other job initiators for future task allocation.

4.2 Predictable Contacts without Control Channel

When mobile nodes have no control channels, it is impossible to re-
serve task execution time in advance. WaterFilling will cause con-
tention for task execution among different jobs on popular nodes,
prolonging the task execution time. To solve this problem, we pro-
pose an algorithm framework, Computing on Dissemination (CoD),
to allocate tasks in an opportunistic way. The algorithm is shown
in Algorithm 2.
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Algorithm 2 Computing on Dissemination
1: procedure ENCOUNTER(n) � n is the encountered node.
2: summary← getSummary();
3: send(n, summary);
4: end procedure
5: procedure GETSUMMARY

6: compute← getNodeComputingSummary();
7: net← getNetworkSummary();
8: tasks← getPendingTaskSummary();
9: return {compute,net,tasks};

10: end procedure
11: procedure RECEIVESUMMARY(n, msg) � msg is the summary

message of node n.
12: updateNodes(msg.compute);
13: updateNetwork(msg.net);
14: toExchange← exchangeTask(n, this.tasks, msg.tasks);
15: isSent← false;
16: while n.isConnected() && !toExchange.isEmpty() do
17: send(n, toExchange.poll());
18: isSent← true;
19: end while
20: if n.isConnected() && isSent == true then
21: summary← getSummary();
22: send(n, summary);
23: end if
24: end procedure
25: procedure RECEIVETASK(msg) � msg contains exchanged tasks.
26: addTasks(msg.tasks);
27: end procedure

The basic idea of CoD is that during the task dissemination pro-
cess, every intermediate node can execute these tasks. Instead of
explicitly assigning a destination node to every task, CoD oppor-
tunistically disseminates the tasks among those encountered nodes
until all tasks finish. Every time two nodes encounter each other,
they first exchange metadata about their status. Based on this infor-
mation, they decide the set of tasks to exchange. When they move
out of the communication range, they will keep the remaining tasks
to execute locally or exchange with other encountered nodes in the
future.

The key function of this algorithm is the exchangeTask function
of line 14 that decides which tasks to exchange. In this subsec-
tion we assume that future contact is still predictable. Therefore,
the task completion time can be estimated when the task arrives at
a node as discussed in last subsection. The intuition of CoD with
predictable contacts (pCoD) is to locally minimize the task com-
pletion time of every task if possible. When a node receives the
summary message from the encountered node, it first estimates the
execution time of its carried tasks on the other node using the job
profiles and the device profiles. For each task it carries, it estimates
the task completion time (i.e., the time that its result is received by
the initiator) of executing locally and that of executing on the other
node by using the contact information. If the local task completion
time is larger than the remote one, it sends the task to the encoun-
tered node. Every node conservatively makes the decision without
considering the tasks the other node will send back.

4.3 Unpredictable Contacts

Finally we consider the worst case that future contacts cannot be
accurately predicted. Our task allocation algorithm, CoD with un-
predictable contacts (upCoD), is still based on CoD with the con-
straint that future contact information is unavailable. As shown in
Figure 3, minimizing the time when the last task is sent back to
the job initiator will reduce the PNP-block completion time. When
the data transfer time is unpredictable, we envision that reducing
the execution time of the last task will also help reduce PNP-block
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Node 1 Node 2 Node 3 Node k...
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Figure 4: A job example where both PNP-block B and C are dissem-
inated to Serendipity nodes after A completes. Their task positions in
the nodes’ task lists are shown blow the DAG.
completion time. This is because the locality property of CoD in-
dicates the existence of a short time-space path between the worker
node and the job initiator node. Therefore, when two nodes en-
counter each other, upCoD tries to reduce the execution time of
every task.

In reality, historical contact information is useful to roughly es-
timate the future contacts [7] and, thus, should be helpful to task
exchange in CoD. Its performance is probably between upCoD and
pCoD. We will investigate such possibility as part of our future
work.

5 PNP-block Scheduling
Our PNP-block design simplifies the task allocation so that every
PNP-block is treated independently. However, it is still possible
to further reduce the job completion time by assigning priorities to
PNP-blocks since tasks from the same job are executed according
to their priority assignment.

Let’s consider a simple job DAG shown in Figure 4. PNP-blocks
B and C are simultaneously allocated after A completes. Their
tasks arrive at the destination nodes unordered. Given a network
and a task allocation algorithm, the total time required for both B
and C to finish remains almost the same. However, either B or C
can have a shorter PNP-block finish time if any of them is given a
higher priority over the other. This will be beneficial because their
children PNP-block can start earlier.

OBSERVATION 1. It is better to assign different priorities to the
PNP-blocks of a job.

In the example shown in Figure 4, PNP-block E can only start
when both B and D finish. Thus, B and D are equivalently im-
portant to E. Meanwhile, there is a time gap between the execu-
tion time of C and that of D caused by the result collection of C
and task dissemination of D. During that gap, the execution of
other tasks (e.g., B) will not affect the PNP-block finish time of D.
Therefore, if C is assigned a higher priority than B, the total time
for both B and D to finish will be shorter.

OBSERVATION 2. All parents of a PNP-block are equivalently
important to it, while parents have higher priorities than their chil-
dren.

The next question arises when B and D are in the task list of
the same node, which should have higher priority. We notice that
both B and D are equivalent to E, while E and F are equivalent
to the job. However, if B finishes earlier, F can start earlier. This
is because F only relies on B.

OBSERVATION 3. When two PNP-blocks have the same prior-
ity, the one with more children only depending on it should be as-
signed a higher priority.

If there are still PNP-blocks with the same priority, we randomly
assign some different priorities to them that keep their relative pri-
orities with other PNP-blocks. Algorithm 3 shows our priority as-
signing algorithm. The sort method of line 13 is based on Observa-
tion 3.
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Algorithm 3 PNP-block Priority Assigning
1: procedure ASSIGNPRIORITY(J) � J is the job DAG
2: while !J .allPNPblocksHavePriority() do
3: for all s ∈ J do � s is a PNP-block
4: if !s.haveChild() then
5: s.priority← 0;
6: else if s.allChildrenHavePriority() then
7: s.priority← s.maxChildrenPriority()+1;
8: end if
9: end for

10: end while
11: for p = 0→ J .getMaxPriority() do
12: PNPblocks← J .getPNPblocksWithPriority(p);
13: sort(PNPblocks);
14: for i = 0→ PNPblocks.size()-1 do
15: s← PNPblocks.get(i);
16: s.priority← s.priority + i

PNPblocks.size()
;

17: end for
18: end for
19: end procedure

6 Energy-Aware Computing
In the above two sections we focused on how to accelerate the job
execution without any consideration of the energy consumption.
Because of the limited energy available to some kinds of mobile de-
vices (e.g., smartphones), there are also scenarios when energy con-
servation is at least as important as execution performance, espe-
cially when the applications can tolerate delays. In this section, we
describe how to support energy-aware computing with Serendipity.

When a mobile device tries to off-load a task to another mo-
bile device to save energy, the latter may have very limited energy,
too. Meanwhile, if all nodes postpone the task execution forever,
it definitely saves energy, but meaninglessly. Therefore, a reason-
able objective of energy-aware computing among mobile devices
makes all nodes last as long as possible while timely finishing the
jobs, i.e., maximizing the lifetime of the first depleted node under
the constraint that jobs complete before their deadline (i.e., TTL).
Unfortunately, without information about the future jobs, it is im-
possible to solve this optimization problem.

An approximation to this ideal optimization is to greedily min-
imize a utility function when the job initiator allocates the tasks.
Two factors should be considered in the utility functions, the en-
ergy consumption of all nodes involved in the remote computing of
the task and the residual energy available to these nodes. A good
utility function should consume less energy while avoiding nodes
with small residual energy. We use a simple utility function that
has been considered in energy-aware routing [9]:

u(T ) =
∑

i∈NT

eTi

Ri
(1)

where NT is the set of nodes involved in the remote computing of
task T , eTi is the energy consumption of node i for task T , and Ri

is the residual energy of node i.
As discussed in Section 4 the task allocation algorithms, Water-

Filling, pCoD and upCoD, try to optimize the job completion time.
By replacing the time with the utility function u(T ), we can easily
adapt these task allocation algorithms to be energy-aware. Specif-
ically, the energy-aware WaterFilling algorithm iteratively chooses
the destination node of every task with minimum u(T ) while sat-
isfying the TTL constraint. When two nodes encounter, pCoD and
upCoD will exchange a task if executing it on current node has
higher utility than executing on the other node while satisfying the
TTL constraint. If the future contacts are unpredictable, upCoD
replaces TTL with the time that task is executed.

7 Evaluation
7.1 Experimental Setup

To evaluate Serendipity in various network settings, we have built
a testbed on Emulab [33] to easily configure the experiment set-
tings including the number of nodes, the node properties, etc. In
our testbed, a Serendipity node running on an Emulab node has an
emulation module to emulate the intermittent connectivity among
nodes. Before an experiment starts, all nodes load the contact traces
into their emulation modules. During the experiments, the emula-
tion module will control the communication between its node and
all other nodes according to the contact traces.

In the following experiments, we use two real-world contact traces,
a 9-node trace collected in the Haggle project [19] and the Roller-
Net trace [32]. In the RollerNet trace, we select a subset of 11
friends (identified in the metadata of the trace) among the 62 nodes
so that the number of nodes is comparable to the Haggle trace. The
Haggle trace represents the user contacts in a laboratory during a
typical day, while RollerNet represents the contacts among a group
of friends during the outdoor activity. These two traces demonstrate
quite different contact properties. RollerNet has shorter contact in-
tervals, while Haggle has longer contact durations.

We also use three mobility models to synthesize contact traces,
namely the Levy Walk Model [28], the Random WayPoint Model
(RWP) [29], and the Time-Variant Community Mobility Model
(TVCM) [21]. We change various parameters to analyze their im-
pact on Serendipity.

We implement a speech-to-text application based on Sphinx li-
brary [23] that translates audio to text. It will be used to evaluate
the Emulab-based Serendipity. It is implemented as a single PNP-
block job where the pre-process program divides a large audio file
into multiple 2 Mb pieces, each of which is the task input.

To demonstrate how Serendipity can help the mobile computa-
tion initiator to speedup computing and conserve energy, we pri-
marily compare the performance of executing applications on Serendip-
ity with that of executing them locally on the initiator’s mobile
device. Previous remote-computing platforms (e.g., MAUI [12],
CloneCloud [11], etc) don’t work with intermittent connectivity
and, thus, cannot be directly compared with Serendipity.

In all the following experiments every machine has a 600 MHz
Pentium III processor and 256 MB memory, which is less powerful
than mainstream PCs but closer to that of smart mobile devices.
Every experiment is repeated 10 times with different seeds. The
results reported correspond to the average values.

7.2 Serendipity’s Performance Benefits

We initiate the experiments with the speech-to-text application
using three workloads in three task allocation algorithms on both
RollerNet and Haggle traces. The sizes of the audio files are 20
Mb, 200 Mb, and 600 Mb. As mentioned before, it is implemented
as a single PNP-block job whose pre-process program divides the
audio file into multiple 2 Mb pieces corresponding to 10, 100, and
300 tasks, respectively. The post-process program collects and
combines the results. The baseline wireless bandwidth is set to
24 Mbps. We also assume that all nodes have enough energy and
want to reduce the job completion time.

Figure 5 demonstrates how Serendipity improves the performance
compared with executing locally. We make the following observa-
tions. First, with the increase of the workload, Serendipity achieves
greater benefits in improving application performance. When the
audio file is 600 Mb, Serendipity can achieve as large as 6.6 and 5.8
time speedup. Considering the number of nodes (11 for RollerNet
and 9 for Haggle), the system utilization is more than 60%. More-
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Figure 5: A comparison of Serendipity’s performance benefits. The average job completion times with their 95% confidence intervals are plotted.
We use two data traces, Haggle and RollerNet, to emulate the node contacts and three input sizes for each.

over, the ratio of the confidence intervals to the average values also
decreases with the workload, indicating all nodes can obtain similar
performance benefits. Second, in all the experiments WaterFilling
consistently performs better than pCoD which is better than up-
CoD. In the Haggle trace of Figure 5(c), WaterFilling achieves 5.8
time speedup while upCoD only achieves 4.2 time speedup. The re-
sults indicate that with more information Serendipity can perform
better. Third, although Serendipity achieves similar average job
completion times on both Haggle and RollerNet, their confidence
intervals on Haggle are larger than those on RollerNet. This is
because the Haggle trace has long contact interval and duration,
resulting in the diversity of node density over the time.
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Figure 6: The load distribution of Serendipity nodes when there are
100 tasks total, each of which takes 2 Mb input data.

To further analyze the performance diversity, we plot the work-
load distribution on the Serendipity nodes of Figure 5(b) in Fig-
ure 6. In the RollerNet trace, all three task allocation algorithms
have similar load distribution, i.e., about 25% nodes are allocated
0 tasks while about 10% of the nodes are allocated more than 20
tasks. In the Haggle trace, WaterFilling and pCoD have similar
load distribution, while upCoD’s distribution is quite different from
them. The long contact intervals of the Haggle trace makes the
blind task dissemination of upCoD less efficient. In such an envi-
ronment, the contact knowledge will be very useful to improve the
Serendipity performance.

7.3 Impact of Network Environment

Next, we analyze the impact of the network environment on the
performance of the three task allocation algorithms by changing
the network settings from the base case.
Wireless Bandwidth: We first consider the effect of wireless band-
width on the performance of Serendipity. The wireless bandwidth
is set to be 1 Mbps, 5.5 Mbps, 11 Mbps, 24 Mbps, and 54 Mbps,
which are typical values for wireless links. The audio file is 200
Mb, split into 100 tasks. We plot the job completion times of
Serendipity with three task allocation algorithms in Figure 7.

We observe the following phenomena. First, in RollerNet, all
three task allocation algorithms accomplish similar performance.
Because these nodes have frequent contacts with each other, using
the locality heuristic (upCoD) is good enough to make use of the
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Figure 7: The impact of wireless bandwidth on the performance of
Serendipity. The average job completion times are plotted when the
bandwidth is 1, 5.5, 11, 24, and 54 Mb/s, respectively.

nearby computation resource for remote computing. Second, when
the bandwidth reduces from 11 Mbps to 1 Mbps, the job comple-
tion time experiences a large increase. This is because RollerNet
has many short contacts which cannot be used to disseminate tasks
when the bandwidth is too small. Third, in the Haggle trace, the job
completion time of upCoD increases from 545.0 seconds to 647.6
seconds when the bandwidth reduces from 24 Mbps to 11 Mbps.
Meanwhile WaterFilling achieves consistently good performance
in all the experiments. This is because in the laboratory environ-
ment users are relatively stable and have longer contact durations.
Thus, the primary factor affecting the Serendipity performance is
the contact interval. On the other hand, since the contact distribu-
tion is more biased, only using locality is hard to find the global
optimal task allocation.
Node Mobility: The above experiments demonstrate that contact
traces impact the performance of Serendipity. To further analyze
such impact, we use mobility models to generate the contact traces
for 10 nodes. Specifically, we use Levy Walk Model [28], Random
WayPoint Model (RWP) [29], and Time-Variant Community Mo-
bility Model (TVCM) [21]. These models represent a wide range
of mobility patterns. RWP is the simplest model and assumes un-
restricted node movement. Levy Walk describes the human walk
pattern verified by collected mobility traces. TVCM depicts hu-
man behavior in the presence of communities. The basic settings
assume a 1 Km by 1 Km square activity area in which each node
has a 100 m diameter circular communication range.

In this set of experiments we focus on the two most important as-
pects of node mobility, i.e., the mobility model and the node speed.
The wireless bandwidth is set to 11 Mbps.

The results of this comparison are shown in Figure 8. Figure 8(a)
shows that Serendipity has larger job completion time with all the
mobility models than it had on Haggle and RollerNet traces. This
is because their node densities are much sparser than Haggle and
RollerNet traces. Thus it’s harder for the job initiator to use other
nodes’ computation resources. We also observe that Serendipity
achieves the best performance when the RWP model is used. This
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(b) Node Speed

Figure 8: The impact of node mobility on Serendipity. We generate
the contact traces for 10 nodes in a 1 km×1 km area. In (a) we set the
node speed to be 5 m/s, while in (b) we use Levy Walk as the mobility
model.

is because RWP is the most diffusive [28] and, thus, results in more
contact opportunities among nodes.

Node speed affects the contact frequencies and durations, which
are critical to Serendipity. We vary the node speed from 1 m/s, i.e.,
human walking speed, to 20 m/s, i.e., vehicle speed. As shown in
Figure 8(b), when the speed increases from 1 m/s to 10 m/s, the
job completion times drastically decline, e.g., from 1077.1 seconds
to 621.6 seconds for WaterFilling. This is because the increase of
node speed significantly increases the contact opportunities and ac-
celerates the task dissemination. When the speed further increases
to 20 m/s, the job completion time is slightly reduced to 526.4 sec-
onds for WaterFilling.
Number of Nodes: We finally examine how the quantity of avail-
able computation resources impacts Serendipity. To separate the
effect of node density and resource quantity, we conduct two sets
of experiments. In the first set, the active area is fixed, while in the
second one, the active area changes proportionally with the num-
ber of nodes using the initial setting of 20 nodes in 1 km×1 km
square area. Figure 9 shows the results where nodes follows RWP
mobility model with wireless bandwidth at 2 Mbps.
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Figure 9: The impact of node numbers on the performance of
Serendipity. We analyze the impact of both node number and node
density by fixing the activity area and setting it proportional to the node
numbers, respectively.

As shown in Figure 9(a), with the increase in the number of
nodes in a fixed area, the job completion times of the three task
allocation algorithms are reduced by more than 50%, from 550.0,
647.0, and 748.7 seconds to 273.0, 311.7, and 325.0 seconds for
WaterFilling, pCoD and upCoD, respectively. Meanwhile, in Fig-
ure 9(b), the job completion times are almost constant despite the
increase in node quantity.

7.4 The Impact of the Job Properties

Next we evaluate how the job properties affect the performance of
Serendipity.
Multiple jobs: A more practical scenario involves nodes submit-
ting multiple jobs simultaneously into Serendipity. These jobs will
affect the performance of each other when their execution duration

overlaps. In this set of experiments, nodes will randomly submit
100-task jobs into Serendipity. The arrival time of these jobs fol-
lows a Poisson distribution. We change the arrival rate, λ from
0.0013 (its system utilization is less than 20%) to 0.0056 (its system
utilization is larger than 90%) jobs per second. Figure 10 shows the
results on the RollerNet and Haggle traces.
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Figure 10: Serendipity’s performance with multiple jobs executed si-
multaneously. The job arrival time follows a Poisson distribution with
varying arrival rates.

As expected, the job completion time increases with the job ar-
rival rate. In both sets of experiments, the job completion time
gradually increases with the job arrival rate until 0.005 jobs per
second and, then, drastically increases when the job arrival rate in-
crease to 0.0056 jobs per second. According to queueing theory,
with the system utilization approaching 1, the queueing delay is
approaching infinity. However, even when the system utilization
is larger than 90% (i.e., λ = 0.0056), the job completion times
of Serendipity with various task allocation algorithms are still less
than 54% of executing locally, showing the advantage of distributed
computation.
DAG jobs: The above experiments show that Serendipity performs
well for single PNP-block jobs. Since DAG jobs are executed iter-
atively for all dependent PNP-blocks while parallel for all inde-
pendent PNP-blocks. The above experiment results also apply to
DAG jobs. In this set of experiments we will evaluate how PNP-
block scheduling algorithm further improves the performance of
Serendipity.

We use the job structure shown in Figure 4, where the processing
of one image impacts the processing of another. We use the PNP-
blocks of speech-to-text application as the basic building blocks.
PNP-block A has 0 tasks; B has 200 tasks; C has 50 tasks; D has
100 tasks; E has 100 tasks; F has 0 tasks. The performance dif-
ference between our algorithm and assigning equal priority to the
PNP-blocks is shown in Figure 11.

Our priority assignment algorithm achieves the job completion
time of 1155.8, 1315.8 and 1383.2 seconds for WaterFilling, pCoD,
and upCoD, consistently outperforming that of 1369.2, 1573.4, and
1654.4 seconds when all PNP-blocks have the same priority. These
experiments demonstrate the usefulness of priority assigning. Fur-
ther evaluation of our algorithm on diverse type of jobs will be part
of our future work.

7.5 Energy Conservation

In this set of experiments, we demonstrate how Serendipity makes
the entire system last longer by taking the energy consumption into
consideration. We consider an energy critical scenario where node
i has Ei% energy left, where Ei is randomly selected from [0, 20].
The energy consumption of task execution and communication is
randomly selected from the measured values on mobile devices.
The detailed measurement will be presented in the next section. In
this set of experiments, nodes will randomly submit 100-task jobs
into Serendipity. The arrival time of these jobs follows a Poisson
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Table 1: A comparison of Serendipity’s energy consumption. We report the number of jobs completed before at least one node
depletes its battery and their average job completion time. Jobs arrive in a Poisson process with λ = 0.005 jobs per second.

Haggle RollerNet
Energy Aware Time Optimizing Energy Aware Time Optimizing

# Completed jobs Time (s) # Completed jobs Time (s) # Completed jobs Time(s) # Completed jobs Time(s)
Serendipity(WF) 17.0 2664.7 4.5 409.2 21.8 2823.9 2.5 496.2

Serendipity(pCoD) 10.0 2162.4 3.0 435.3 16.8 2173.6 4.8 539.0
Serendipity(upCoD) 9.3 2080.6 3.0 564.0 16.8 2082.6 3.5 562.7

Executing locally N/A N/A 1.3 1614.0 N/A N/A 1.3 1614.0
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Figure 11: The importance of assigning priorities to PNP-blocks.

distribution with λ = 0.005 jobs per second. We compare energy-
aware Serendipity against “time-optimizing” Serendipity and exe-
cuting jobs locally. The TTL of energy-aware Serendipity is set to
twice the time of executing the job locally.

Table 1 shows the number of jobs completed before at least one
node depletes its energy and the average job completion time of
those completed jobs. We make the following observations. First,
energy-aware Serendipity completes many more jobs than execut-
ing locally and using time-optimizing Serendipity. This is because
energy-aware Serendipity balances the energy consumption of all
the mobile devices through adaptively allocating more tasks to de-
vices with more residual energy. In contrast, the time-optimizing
Serendipity will quickly deplete the energy of some mobile devices
by allocating many tasks to them. Second, through global opti-
mization, energy-aware Serendipity with the WaterFilling alloca-
tion algorithm completes more jobs than those with pCoD and up-
CoD. Third, the job completion time of energy-aware Serendipity is
much larger than that of time-optimizing Serendipity. There exists
a tradeoff between energy consumption and performance. Finally,
compared with executing locally, time-optimizing Serendipity both
completes more jobs and has smaller job completion time. This is
because statistically the few devices with limited residual energy
will last longer by off-loading the computation to other devices.

8 Implementation
We implemented a prototype of Serendipity on the Android OS [1].
It comprises three parts: the Serendipity worker corresponding to
the worker in Fig. 2, the Serendipity controller including all other
components in Fig. 2 and a user library providing the key APIs for
application development.

We currently use WifiManager’s hidden API, setWifiApEnabled,
to achieve the ad hoc communication between two devices, i.e., one
device acts as an AP while the other device connects to it as a client.

We use the Java reflection techniques to dynamically execute the
tasks. Every task has to implement the function execute defined in
the APIs. When the Serendipity worker executes a task, it executes
this function.

The separation between the Serendipity worker and the Serendip-
ity controller is based on access control. Android’s security ar-
chitecture defines many kinds of permission to various resources
including network, GPS, sensors, etc. The Serendipity worker is
implemented as a separate application with limited access permis-

sion to these resources, acting as a sandbox for the task execution.
When the Serendipity controller receives a task to execute, it will
start a Senredipity worker and get the results from it.

8.1 System Evaluation

To evaluate our system, we implemented two computationally com-
plex applications, a face detection application, and a speech-to-text
application. The face detection application takes a set of pictures
and uses computer vision algorithms to identify all the faces in
these pictures [17]. It is implemented as a single PNP-block job
where the face detection in each picture is a task. The speech-to-
text application takes an audio file and translates the speech into
text using the Sphinx library [23]. It is also a single PNP-block
job where the pre-process program divides a large audio file into
multiple pieces, each of which is input to a separate task.

We tested Serendipity on a Samsung Galaxy Tab with a 1 GHz
Cortex A8 processor and a Motorola ATRIX smartphone with a
dual-core Tegra 2 processor, each at 1 GHz. Both of them run the
Android 2.3 OS. The face detection and speech-to-text applications
are used for evaluation.

Table 2: The execution time of two applications on two devices.
Input size (Mb) Galaxy Tab (s) ATRIX (s)

FaceDetection 2.2 17.9 7.2
Speech-to-text 3.0 40.3 18.8

We first executed the two applications locally on the two devices.
As Motorola ATRIX smartphone has a dual-core processor, we split
the input files into two parts of equal size and simultaneously ex-
ecuted the two tasks to fully utilize its processor. Table 2 shows
their execution times. We also measured the TCP throughput be-
tween these two devices by sending 800 Mb data. We obtain 10.8
Mbps throughput on average when they are within 10 meters. In
fact, they still achieve 5.9 Mbps throughput even when they are
more than 30 meters away.

To assess the performance of Serendipity, we construct a simple
network in which the two devices are consistently connected during
the experiments. As expected, Serendipity speeds up more than 3
times than executing the applications on the Samsung Galaxy Tab.

To generate the energy consumption profiles of the two appli-
cations on these mobile devices, we repeatedly execute those ap-
plications starting with full battery until the batteries are depleted
and count the number of iterations. Similarly, WiFi’s energy pro-
files are obtained by continuously transferring data between them.
Table 3 demonstrates the results.

Table 3: The energy consumption of mobile devices. The ra-
tios of consumed energy to the total device energy capacity are
reported.

Input size (Mb) Galaxy Tab ATRIX
FaceDetection 2.2 4.14× 10−4 3.44× 10−4

Speech-to-text 3.0 9.32× 10−4 9.01× 10−4

WiFi 800 8.02× 10−4 2.04× 10−3

The energy required to transfer a task only accounts for 0.5 %
( i.e., max( 8.02×2.2

4.14×800
, 8.02×3.0

9.32×800
)) and 1.6% ( i.e., max( 20.4×2.2

3.44×800
,
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20.4×3.0
9.01×800

)) of the energy required to execute the task on these de-
vices, respectively. It indicates that Serendipity won’t consume
much extra energy. Instead, by delegating tasks to devices with
a lot of energy, it can significantly save the job initiator’s energy.

We use an extreme example to show the gains of energy-aware
Serendipity. Suppose the ATRIX phone has a lot of pictures for face
detection. Assume it only has 5% energy left, and the Galaxy tablet
has 50% energy left. Energy-aware Serendipity can detect about
1320 pictures before the ATRIX phone depletes its battery, while
time-optimizing Serendipity can only detect about 203 pictures.

9 Conclusion and Future Work
In this paper we have developed and evaluated the Serendipity sys-
tem that enables a mobile device to remotely access computational
resources on other mobile devices it may encounter. The main chal-
lenge we addressed is how to model computational tasks and how to
perform task allocation under varying assumptions about the con-
nectivity environment. Through an emulation of the Serendipity
system we have explored how such a system has the potential to
improve computation speed as well as save energy for the initiating
mobile device. We have also reported on a preliminary prototype
of our system on Android platforms.

In our future work we will complete our experimental evaluation
of the prototype systems to include more devices and incorporate
intermittent connectivity. We will also consider incentive and repu-
tation systems that are derived from previous work in MANET and
peer-to-peer systems and tailored to the Serendipity environment.

As mentioned previously we envision Serendipity as developed
here to enable an extreme of a spectrum of remote computation pos-
sibilities that are available to mobile devices. Our future work will
consider extending our investigation to enable hybrid remote com-
putation where the use of cloud or cloudlet resources is augmented
with the use of resources on other mobile devices.
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