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In target tracking sensor networks, tracking quality and network lifetime are two conflict-
ing optimization goals due to the limited battery power of the sensor nodes. During the
movement of a target, how to select an optimal subset of sensors to wake up is of critical
importance both for extending network lifetime and guaranteeing tracking quality. In this
paper, we first propose a probabilistic-based dynamic non-complete k-coverage method,
a–k-coverage, which can guarantee that target moving area is covered by at least k sensors
under at least a probability. Then, we propose an energy-efficient sensor scheduling
scheme, Optimal Cooperation Scheduling Algorithm (OCSA), to balance tracking quality
and network lifetime under a–k-coverage condition. The effectiveness of the proposed
scheme is validated through extensive simulation experiments.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) are an emerging technology that has many applications. These networks are composed
of hundreds, and potentially thousands of tiny sensor nodes, functioning autonomously, and serving different purposes. They
are typically battery powered with limited communication and computation abilities. Each node is equipped with a variety
of sensing modalities, such as acoustic, seismic, and infrared. Applications of WSNs include battlefield surveillance, environ-
ment monitoring, biological detection, home appliance and inventory tracking. In this paper, we focus on target tracking
application.

Target tracking is an important application of wireless sensor networks, such as vehicle tracking in military
surveillance [32] and wild animal tracking in habitat monitoring [7,20]. In these applications, tracking quality and network
lifetime are two conflicting requirements due to the limited battery power of the sensor nodes. With unlimited power supply,
a given area can be monitored perfectly with a set of sensor nodes that cover the entire area in terms of sensing. However,
since the sensor nodes have limited power, the quality of monitoring becomes inversely proportional to the life time of the
network. Thus, during the movement of a target, how to select an optimal subset of sensors to wake up is of critical importance
both for extending network lifetime and guaranteeing tracking quality [11,38]. It is a challenge task to design an energy-
efficient tracking algorithm for target tracking application due to the limited battery power of the sensor node, which aims
at increasing the network lifetime.

Most works recently in target tracking application focus on the deployment phase of wireless sensor networks. How to
schedule sensors dynamically and timely by taking into account of both the energy consumption and tracking quality is still
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a challenge during the target’s movement. As power is always a valuable and limited resource in sensor networks, it has been
advocated that only a small subset of sensor nodes is powered on for the purpose of surveillance and tracking, in which node
activation is based on trajectory prediction. However, corresponding performance highly depends on the accuracy of mobil-
ity prediction algorithms. In fact, the prediction of the next location of target may not be always accurate. A wrong prediction
may cause a wrong sensor scheduling.

Though we cannot predict the next location of target accurately, we can predict the possible moving area of target at next
time point, that is, we can predict the approximation bound of the next location of target. In this paper, we propose a
dynamic moving area prediction method and a probabilistic-based dynamic non-complete k-coverage method, a–k-cover-
age, which can guarantee that target moving area is covered by at least k sensors under at least a probability. Thus, a can-
didate sensor set can be selected using a–k-coverage algorithm. Then, we propose a novel sensor selection algorithm,
Optimal Cooperation Scheduling Algorithm (OCSA), to select a suitable sensor subset from the candidate set by both taking
into account of minimizing communication cost (minimizing the transmission energy) and sensor’s availability. The goal is
to find the suitable subset of sensors which will be waked up in next tracking period, in order to not only minimize the trans-
mission energy but also provide certain tracking quality guarantee.

This study is a combination of theoretical analysis and simulated evaluations, the correctness of our tracking algorithm
and the effectiveness of the proposed scheduling scheme are validated through theoretical proofs and extensive simulation
experiments. The contributions of this paper are the following:

(1) Taking account into tracking quality and network lifetime in target tracking sensor networks.
(2) Proposing the concept of a–k-coverage, a probabilistic-based dynamic non-complete k-coverage method for target

tracking application. The candidate sensor set which may be activated at next tracking period can be selected by
a–k-coverage.

(3) Designing a novel energy-efficient sensor scheduling algorithm to select a suitable subset from the candidate sensor
set.

(4) Analyzing the performance of our approach through simulation.

The rest of the paper is organized as follows. In Section 2, we categorize the related research works in current literature.
The system model of target tracking sensor network including the energy consumption model is given the Section 3. The
problem definition is also given in Section 3. In Section 4, we propose a probabilistic-based dynamic area coverage algorithm
to determine the candidate tracking sensor set. An energy-efficient sensor selection algorithm to balancing the tracking qual-
ity and energy consumption by selecting a suitable subset from the candidate sensor set is presented in Section 5. The
detailed results of performance evaluation study are presented in Section 6. Finally, we conclude the paper and point out
some future works related to this topic.
2. Related works

Tracking moving targets in large scale sensor networks has gained extensive attention recently. Aslam et al. [4] and
Mechitov et al. [22] propose several tracking schemes based on the minimalist binary sensor model, in which each sensor’s
value is converted reliably to one bit of information. This bit indicates that whether the object is moving toward the sensor or
away from the sensor. The tracking scheme is then designed based on the area overlapping. However, this binary model
cannot measure the distance, and the area overlapping requires large amount of nodes to determine the target’s location
accurately. It causes heavy energy consumption.

A novel target tracking protocol [31] is proposed by using sensor networks for mobile users. It is assumed that a mobile
target may move in any way, so in all the ways the sensor nodes need to be active, thus it consumes too much energy. To save
the energy, the number of nodes that actively track the target should be minimized. Most nodes should be in sleeping mode.
To guarantee the tracking quality, the nodes around the current location of target should be waked up in time. Information-
driven target tracking schemes are proposed by Chu et al. [10] and Zhao et al. [42]. The information utility is computed based
on the cost of communication and computation to decide which nodes should actively participate the tracking. The leader is
selected to perform this computing. However, it is a one-to-one based handoff scheme. The leader is heavily loaded.

Wang et al. [35], Chen et al. [9], and Yang and Sikdar [37] propose cluster-based tracking schemes. In these schemes, sen-
sor nodes are grouped into clusters either statically or dynamically in the vicinity of target. This cluster is in charge of track-
ing. The trilateration technique [9], the Voronoi diagram-based approach [35] and KF/MLE based approach [34] are utilized
to locate the target. A cluster head coordinated the tracking activities of nodes in this cluster. The key of these schemes is to
predict the target’s location accurately and construct corresponding cluster based on predicted location.

Zhang and Cao [40,41] introduce a tree-based tracking approach (DCTC). They define a dynamic convoy tree-based col-
laboration tracking mechanism and formalize the tracking problem as a multiple objective optimization problem. The solu-
tion to the problem is a convoy tree sequence with high tree coverage and low energy consumption. However, global
network information that is not available in largest sensor network is required for constructing such a convoy tree sequence.
Re-configuration and maintenance of a convoy tree incurs considerable computational and communication overhead. And
building such a tree also depends on trajectory prediction.
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Some other prediction-based tracking algorithms [24,36] are proposed to use prediction method to limit number of sen-
sor nodes to track a target. Specifically, mobile agents are used for tracking. The agents move between sensor nodes with the
tracking data [25] indicating the target’s moving trace. Marculescu et al. [21] proposed a tracking method to overcome the
limitations of continuous location tracking. Sensor nodes operate in a passive way: they only record and spread information
about observed target presence in their vicinity. Powerful tracking agent processes this information and locates the target.
This agent balances the tracking latency and the energy dissipation. However, the communication overhead is large and
powerful agent may not exist in the practical environment. Li et al. [18] developed as a decentralized tracking strategy based
on a partial information broadcasting scheme (PIBS), where only a part of the nodes broadcast their tracking estimation
results to their neighbors. The finite sensing range of a sensor node is considered and a node activation scheme with variable
activation radius is introduced for energy saving.

Liang et al. [19] proposed a distributed infectious disease model (DIDM) for design efficient tracking protocols. The DIDM
based wakeup method is derived through establishing the correspondence between sensor wakeup and disease propagation.
Besides, one theorem about parameter design is presented, exploiting the relationship among sensor properties, communi-
cation properties, performance requirements and the method parameters.

All these schemes are all dependent on some trajectory prediction or location estimation techniques. The performance of
these schemes highly depends on the accuracy of trajectory prediction or location estimation algorithms. A large number of
active sensor nodes are also used. Comparing with these schemes, our approach does not try to predict the accurate trajec-
tories, but to predict the possible moving area. It greatly relieves the dependence on the accuracy of trajectory prediction
algorithm. The focus of this paper is to design proper sensor selection scheme based on moving area prediction to balance
the energy consumption and tracking quality. The work on the kinetic model of moving target [23] can be helpful to design
high accuracy trajectory predicting algorithms. And it can be integrated into our scheme to improve the performance.

RARE-Area and RARE-Node algorithms [13] for target tracking may reduce the number of nodes participating in tracking
and so increase the energy efficiency. However, their approach assumed that a single node close to a target can detect the
status of the target. It is a too strong assumption.

To get the insight into the energy consumption and tracking quality, a study on power-centric sensor deployment
schemes that are independent of tracking methods and collaboration protocols is performed in [12]. The notion of quality
of surveillance and tracking is introduced and used to guide the protocol design. The trade-off in surveillance phase and
tracking phase is analyzed. They also proposed PECAS method for the tracking. Controlled Greedy Sleep (CGS) algorithm
is a quasi-optimal synchronized sensor scheduling algorithm which increases network lifetime while maintaining correct
functionality, based on local decisions of sensors [5]. These results are all based on coverage.

Coverage is an important criterion in devising target tracking application. It affects the quality of monitoring in the oper-
ational field. The centralized solutions based on approximation techniques [6,30] or on integer programming [8] are pro-
posed to determine the minimum set of sensor for covering every location in the target field. Cardei and Wu [6] have
reviewed different coverage models and solutions. Current research efforts on coverage [6,16,33] have focused on full cov-
erage of the target field. Generally, high coverage means high tracking quality in the tracking applications. However, full high
coverage limits the nodes selection. Some nodes will be used in tracking mostly, and their energy will be consumed quickly,
which may lead to energy hole. In many cases, the deployment cost, the physical limitations, and the operational efficiency
make the full high coverage fail.

Probabilistic coverage [2,3] gives us more options. Sheu and Lin [29] and Hefeeda and Ahmadi [14] show probabilistic
coverage based solution can reduce the energy consumption and improve the performance of sensor network based appli-
cations. Huang and Tseng [16] lay a foundation for testing network p-coverage solely based on local information. Ren et al.
[26] uses analytical model to demonstrate that probabilistic coverage can balance object-tracking quality and network life-
time. However, using the probabilistic coverage in the tracking applications directly may not be an efficient way. This is
because there are more candidate nodes than actually needed for tracking operations. Proper sensor scheduling scheme
can select the nodes optimally from the candidate set to balance energy consumption and tracking quality.

3. System overview and model

3.1. System overview

Our researches focus on moving target tracking application. We assume that the sensor nodes are scattered randomly in a
geographical region. Each sensor is aware of its location. Location information can be gathered using an on-board GPS recei-
ver. Absolute location information is, however, not needed. It is sufficient for the sensors to know their location with respect
to a common reference point. Many localizing techniques can be used with varying degree of hardware complexity and accu-
racy. The sensor nodes are stationary in our model; this makes the localization problem somewhat simpler. Since the work
presented here is not dependent on any particular localization method used, we do not emphasize any particular technique.
The sensors must be capable of estimating the distance of the target to be tracked from the sensor readings. It is assumed
that the sensor has already learned the sensor reading to distance mapping.

The system adopts a distributed architecture where the sink nodes are responsible for the initialization tracking system
(such as time synchronization), visualization of the target trajectory and maintenance the database, whereas sensor nodes
are responsible for local target detection, and target track data association.
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The goal of this paper is to develop techniques for the above moving target tracking problem. The focus of our study is to
design an energy-efficient sensor scheduling algorithm in order to balance energy consumption and tracking quality. For the
sake of simplicity, we focus on the collaborative sensor scheduling algorithm during the tracking phase, ignoring the detec-
tion phase and glossing over the details of routing the query into regions of interest. We further assume there is one leader
node active at any moment, and its task is to perform tacking algorithm and sensor scheduling algorithm, and route tracking
information to the next leader. Leader nodes perform sensor selection algorithm to decide which sensors to be awake at next
time point, and then transmit tracking information to sink nodes periodically. If the leader node does not have enough power
to perform scheduling task., it transmit tracking information to sink node, and sink node selects a new leader node to per-
form this scheduling task or does it itself.

3.2. Problem definition

We consider the issue of tracking moving target with certain level of tracking quality, while conserving power. We
address the target tracking problem by taking into account both coverage problem and minimizing energy consumption.

Coverage is an important issue in target tracking application. On one hand, the more intensive a moving target is covered
by sensors, the more possible it is tracked accurately. On the other hand, though the moving target is in the sensing range of
sensor i at certain time point, it may not be monitored by sensor because of the possible instance that sensor i dies out due to
energy depletion or low data availability due to signal attenuation and noises. Thus, coverage should not be the only criterion
in devising target tracking application.

Obviously, considering only coverage criterion is not enough to obtain certain level of tracking quality, communication
cost and sensor’s availability both needed to be considered. The sensor scheduling schemes are aiming to select a sensor sub-
set which not only maximize the lifetime of the network but also provide certain tracking quality guarantee. The sensor
scheduling scheme can be accomplished as follows:

(1) Predict the possible moving area of the target at next time point, Xt+1.
(2) Decide the candidate sensors covering the possible moving area of the target using a–k-coverage algorithm.
(3) Select a suitable sensor subset S’ from the candidate sensor set S, in order to minimize the communication cost, thus to

minimize the energy consumption.

The goal of this scheme is to schedule the activities of sensor nodes such that the target can be continuously observed
under certain quality guarantee and network lifetime is maximized.

3.3. Energy consumption model

Sensors use energy to run circuitry and send radio signals. The later is usually a function of distance and takes a large
potion of the energy. Radios typically have four power levels corresponding to the following states: transmitting, receiving,
listening, and sleeping. Typically, the power required to listen is about the same as the power to transmit and receive. The
sleep power is usually one to four orders of magnitude less. For Mica2 Mote sensors [1], these power levels are: 81 mW for
transmit, 30 mW for receive and idle, 0.003 mW for sleep. Thus, a sensor should sleep as much as possible when it is not
engaged in communication. We assume that the mean energy consumption rate of sensor node can be measured. In this
paper, we propose the following energy consumption model.

The mean energy consumption rate of node i, denoted as wi, is
wi ¼ ep þ el þ et ¼ ep þ klli þ ðkt=jAijÞ
XAi

j2Ai

dij ð1Þ
where ep is the energy for data processing per unit time, li is the distance between node i and target location, el is the energy
for sensing per unit time, et is the energy for data communication with neighbor nodes per unit time, Ai is the set of neighbor
nodes of sensor node i, |Ai| is the number of neighbor nodes of sensor node i, dij is the distance between sensor node i and
sensor node j, kl (J/s m) is the energy for measuring per unit distance per unit time, kt (J/s m) is the energy for communication
per unit distance per unit time. Parameters kt and kl mostly depended on the characteristic of sensor node. We assume that kt

and kl are constants known. Assuming each node i has an initial battery energy Ei, the lifetime Ti of node i is defined as the
expected time for the battery energy Ei to be exhausted, that is, Ti = Ei/wi where wi is given by (1).
4. Probabilistic-based dynamic area coverage

In this section, an approximate prediction approach is developed to predict the possible moving area of target at next time
point. Though we cannot predict the next location of target accurately, we can predict the possible moving area of target at
next time point, that is, we can predict the approximation bound of the next location of target. Then, we propose a
probabilistic-based dynamic non-complete k-coverage method, a–k-coverage, which can guarantee that target moving area
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is covered by at least k sensors under at least a probability. Thus, a candidate sensor set can be selected using a–k-coverage
algorithm.

Proposition 1. Assume that state estimation uncertainty of a moving target can be approximated by a Gaussian distribution. Then,
the uncertainty of the target state estimation at next time can be illustrated by an uncertainty ellipsoid in the state space.
Proof. Let T is time step and Xt ¼ ½ xt yt �T is the state of a target at time t, velocity vector is
Vt ¼ v t
x v t

y

� �T
:

The state equation is Xt+1 = Xt + VtT.
Let V � Nðl;RÞ;l ¼ ðlx ly Þ
T
;
X
¼

r2
x rxy

rxy r2
y

 !
; then; EðXtþ1Þ ¼

x̂t þ lxT

ŷt þ lyT

 !
;varðXtþ1Þ ¼ T2

X
;

where ð x̂t ŷt ÞT is the target’s state estimated by Extended Kalman Filtering at time t, E(Xt+1) is the expectation of Xt+1, and
var(Xt+1) is the covariance of Xt+1. Thus,
Xtþ1 � NðEðXtþ1Þ; T2RÞ ¼ N
x̂t þ lxT

ŷt þ lyT

 !
; T2R

 !
:

Let Z = f(Xt+1|Xt), then,
ðXtþ1 � EXtþ1ÞðT2RÞ�1ðXtþ1 � EXtþ1Þ ¼ � lnð4p2Z2T2RÞ

r2
xr2

y

T2ðr2
xr2

y � r2
xyÞ
ðxtþ1 � aÞ2

r2
x

� 2rxy

r2
xr2

y
ðytþ1 � bÞðxtþ1 � aÞ þ ðy

tþ1 � bÞ2

r2
y

" #
¼ � lnð4p2Z2T2RÞ; ð2Þ
where Z is a constant which is in range (0,1]. For simplicity, we Let x̂t þ lxT ¼ a, ŷt þ lyT ¼ b.
The problem is divided into the following two cases.
Case 1. rxy = cov(x, y) = 0, Eq. (2) is transformed to
� lnð4p2Z2T2RÞ ¼ 1
T2

ðxtþ1 � x̂t � lxTÞ2

r2
x

þ
ðytþ1 � ŷt � lyTÞ2

r2
y

" #

This case can be further divided into two sub-cases according to V.

Case 1.1. V � N(0, I2), then
ðxtþ1 � x̂tÞ2 þ ðytþ1 � ŷtÞ2 ¼ �T2 lnð4p2Z2T2RÞ
Xt+1, the target’s state uncertainty at next time can be illustrated by an uncertainty circle in the state space, and the center of
the circle is the state estimation bXt at time t, its radius is
T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð4p2Z2T2RÞ

q
:

Fig. 1 shows the uncertainty ellipsoid in this sub-case.
Case 1.2. vx � Nð0;r2

x Þ;vy � Nð0;r2
yÞ; then
xtþ1 � x̂t
� �2

r2
x

þ
ytþ1 � ŷt
� �2

r2
y

¼ �T2 lnð4p2Z2T2RÞ
Fig. 1. The results of case 1.1.
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Xt+1 can be illustrated by an uncertainty ellipsoid in the state space, and the center of this ellipsoid is the state estimation bXt

at time t. The long half axis is
rxT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð4p2Z2T2RÞ

q

and short half axis is
ryT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð4p2Z2T2RÞ

q

(if rx > ry). Fig. 2 shows the uncertainty ellipsoid in this sub-case.

Case2: rxy = cov(x, y) – 0

Xt+1 can be illustrated by an uncertainty ellipsoid in the state space, and the center of this ellipsoid is
x̂t þ lxT ŷt þ lyT
� �T . Fig. 3 shows the uncertainty ellipsoid.

From all above cases, it can be saw that, the uncertainty of the target state estimation at next time can be illustrated by an
uncertainty ellipsoid in the state space. The area of this uncertainty ellipsoid is depended on the time step T, the covariance
of velocity and density function constant Z. h

In fact, the area of the uncertainty ellipsoid at any time point t indicates the error of state estimation or state prediction.
Thus, the ellipsoid area at time point t can be approximately as the possible moving area of target at time point t. All sensors
which cover the ellipsoid area become a candidate sensor set using certain coverage algorithm.

In traffic engineering, it has widely been accepted that the speeds in the free-flow vehicle traffic state can be considered
as normally distributed [27]. And under free-flow conditions, the walking speeds of pedestrians in the certain spots like air-
ports and subway terminals can also be considered as normally distributed [39]. This is the reason why the Gaussian distri-
bution is adopted here to predict the next moving area.

For tracking a moving target with non-Gaussian distribution, for example, wild animals tracking, we propose the other
approach to predict target moving area. First, we predict the next location of target, Xt+1, using a certain predicting method.
Then, as Fig. 4 shows, the target possible moving area at next time can be illustrated by an uncertainty circle in the state
space, and the center of the circle is the predicted next location Xt+1, its radius is r0 = r/2, where r is the sensing radius of sen-
sor node.

For a target tracking sensor network, partial coverage may be enough to provide certain tracking quality with less energy
consumption compared with full coverage. A relaxed sensing coverage may be more appropriate for balancing target-track-
ing quality and battery power consumption. A probabilistic-based dynamic non-complete k-coverage method, a–k-coverage,
which guarantees that target moving area is covered by at least k sensors under at least a probability, is adopted in our
scheme.

We assume that the possible area of target’s state prediction at next time is Xt+1, the area of Xt+1 is S(Xt+1) = St+1. The partial
area of Xt+1 which is covered by sensor si is Ai, that is, S(Xt+1 \ si) = Ai. Then, the probability pi that the moving target is covered
by sensor si at next time is pi = S(Xt+1 \ si)/S(Xt+1) = Ai/St+1. As Fig. 5 shows, the intersection areas of sensor s1, s2, s3 and the
target’s moving area at next time are A1, A2, A3. Then the probabilities that the moving target is covered by the three sensors
are p1 = A1/St+1, p2 = A2/St+, p3 = A3/St+1. Obviously, p1 < p2 < p3 = A3/St+1 = 1.

Definition 1. Given a probability a and a target area Xt+1, the probability that the moving target is covered by sensor si at
next time is pi, then, the candidate sensor set at next time point is S = {si|pi P a, i = 1,2, . . . ,k}.
(i) In the case a = 1, the area Xt+1 of target’s state prediction is entirely covered by k sensors of set S, that is, the target area
Xt+1 is k-covered.

(ii) In the case 0 < a < 1, the area Xt+1 of target’s state prediction is covered by k sensors of set S at least probability a, con-
ditionally on this, we define the target area Xt+1 satisfying no-complete k-coverage, a–k-coverage.
Fig. 2. The results of case 1.2.



Fig. 3. The results of case 2.

Fig. 4. The possible moving area at next time point.

Fig. 5. An example of a–k-coverage.
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As the probability a is small, more sensors can meet a–k-coverage requirement, that is, k will be a greater value. When a
increases to a greater value even close to 1, a–k-coverage is approximately k-coverage, fewer sensors can meet requirement,
so k will be a small value. In fact, given the certain predicted area, a and k are approximately inversely proportional.
5. Energy-efficient sensor scheduling algorithm

A novel sensor scheduling algorithm, Optimal Cooperation Scheduling Algorithm (OCSA), is proposed in this section to
select a suitable sensor subset from the candidate set by both taking into account energy cost and sensor’s availability.
The goal is to find a suitable subset of sensors which not only minimize the transmission energy but also provide certain
tracking quality guarantee. The whole tracking process is divided into a series of time step. In each step, the candidate
set is determined by probabilistic coverage and the tracking sensors are selected by OCSA

We formulate the Sensor scheduling problem as follows:
Given:

� A candidate sensor set S = {si|pi P a, i = 1,2, . . . ,k} in t-th time step.
� The mean energy consumption rate of sensor i, wi, for all si 2 S.
� The residual energy of sensor si in t-th time step, Ei,t, for all si 2 S.
� The least energy limitation E for consumption within each time interval.

Find:

� The selected optimal sensor subset in t-th time step, S0.
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Variables:

� xi, Boolean variable, for i = 1,2, . . . ,k; xi = 1 if sensor si 2 S0, otherwise xi = 0.

The total energy cost including sensing and communicating cost of sensor node i in t-th time step is defined as
Ci;t ¼ bxili þ ð1� bÞxigðxiÞ ð3Þ
where g(xi) = Rj–i
k(xjdij)/Rj–i

kxj.
Since we do not know the exact target’s location, we use the center of predicted ellipsoid/circle as the expected target

location. li is the distance between sensor i and expected target location. bxili is the energy cost for sensor i to measure
the target and determine the relative distance. b is energy consumption ratio for measuring, (1 � b)xi g (xi) is the mean
energy cost for communication with neighbor sensors under the condition that sensor i is selected. In fact, b depends on sen-
sor sensor’s characteristics, such as transmission range and sensing range. Then, the total energy cost of sensor nodes in the
candidate sensor set S in t-th time step is,
f ðx1; x2; . . . ; xkÞ ¼ Rk
i Ci;t ð4Þ
The optimization problem can be written as:
Minimizing
Xk

i¼1

Ci;t

subject to ðEi;t �wiDtÞxi P 0 for i ¼ 1;2; . . . ; k

Rk
i Ei;txi P E

Rk
i xi P NL
where xi = 0 or xi = 1.
Remarks:

� The first constraint, (Ei,t � wi4t)xi P 0 for i = 1,2, . . . ,k, guarantees that the residual energy Ei,t of sensor si is enough for
tracking within next time step. 4t is the length of time step.
� The second constraint, Ri

kEi,txi, P E guarantees that total residual of selected sensors is not less than the energy limitation
E. According the energy consumption model, combining different sensors to cooperate tracking may lead to different
energy consumption. A total energy limitation can help to combine suitable sensors.
� The third constraint, Ri

kxi P NL guarantees that at least NL sensors will be selected. NL is the number of sensors necessary
to locate the target.

The goal is to find the sensors from the candidate sensor set that are close to the target and close to each other to min-
imize the measuring and communicating cost. Both bxili and (1 � b)xig(xi) depend only on whether the nodes are selected or
not in the t-th time step. Therefore, the optimizing problem is a binary linear problem, which is classified as NP-hard. Most
existing methods are too complex to be implemented on resource limited sensors. In this section, we propose a Greedy
approach to release the computing burden needed to solve this optimizing problem. Our heuristic algorithm takes the can-
didate sensor set S that contains k sensors determined by a–k-coverage in time step t as the input parameters, and returns a
suitable sensor subset S0, S0 # S.

Let the residual energy of k sensors in set S are E1,t,E2,t, . . . ,Ek,t in the beginning of t-th time step and sort the sensors
according to the residual energy in ascending order, which means that E1,t 6 E2,t 6 . . . 6 Ek,t. We define Xpre = (x1,x2, . . . ,xk)
is the last candidate scheduling strategy, and define Xnew = (Xpre; xj = 1) is a new candidate scheduling strategy. Xpre is initially
set the as (xi = 0, i = 1,2, . . . ,NL, xi = 1, i = k � NL + 1, . . . ,k). Since the sensors are sorted according to the residual energy in
ascending order, the initial schedule strategy is to select NL sensors with the most residual energy. The operation (Xpre;
xj = 1) replaces the selected sensor that has the most residual energy with sensor j.

Wireless sensor networks are characterized by limited onboard energy supply. It is important to make the sensors’ energy
consumption balance; otherwise the sensors carrying more communicating or sensing tasks will deplete their energy budget
faster than other sensors and die quickly, which drastically reduce the useful lifespan of sensor networks. This uneven energy
depletion phenomenon is called ‘‘energy hole’’. In target tracking sensor networks, if the sensors that are close to the target
moving area and close to each other are always selected, their energy consumes faster and they will not be available for
tracking and communicating quickly. In the rest of tracking period, the solution space is narrowed down and the solution
quality decreases. Besides minimizing the energy consumption, making the energy consumption even is also very important.
The idea of our paper is using probabilistic coverage to get more candidate sensors and avoid ‘‘energy hole’’ as possible as it
can. So OCSA-Greedy selects the sensors with the most residual energy first in each time step, and then tries to reduce the
energy cost by considering the other sensors with less residual energy. If it can lead to a lower energy cost, we update the
selection set.
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Algorithm 1: (Greedy-OCSA Heuristic)

Input: A candidate sensor node set S, time step t
Output: A sensor subset S0.
1: start = k � NL

2: While start >1 do
3: for all the forward start-1 sensor nodes do
4: if the j-th sensor ‘s residual energy is enough then
5: Computer objective function f(Xpre; xj = 1) suppose xj = 1
6: end if
7: end for
8: find the least f(Xpre; xj = 1) from f(Xpre; xj = 1), . . . , f(Xpre; xstart�1 = 1)
9: Computer total residual energy of the candidate strategy (Xpre; xj = 1), Energy_total
10: if f(Xpre; xj = 1) > f(Xpre) && Energy_total > E then
11: Xpre is a suitable solution and stop search
12: else then
13: Select sensor j, xj = 1.
14: update the search place of the next iteration, start = j
15: end if
16: end while
17: return the corresponding sensor subset S0 of strategy Xpre.

The complexity of the Greedy-OCSA Heuristic is O((k � NL)(k � NL)), where k is the number of candidate sensors and NL is
the number of sensors necessary to locate the target. The heuristic runtime is O((k � NL)(k � NL)).

An example that uses a–k-coverage and Greedy-OCSA to select the tracking sensor sensors is shown in Fig. 6. First, the
next moving area is predicted as an ellipsoid. Then a candidate sensor set is determined by a–k-coverage, namely sensors
1–8 in this example. If we use k-coverage, the candidate set is narrowed to sensor 3, sensor 6, sensor 7 and sensor 8. Only
these sensors will be used in tracking, and their energy will be consumed quickly, which may lead to energy hole. If we used
a–k-coverage, the larger size of candidate set provides more opportunities for optimization. Not all the sensors are necessary
for the tracking. Greedy-OCSA selects the sensors with more residual energy and less measuring/communicating costs to
track the target. Here they are sensor 3, sensor 6 and sensor 7. Therefore, more sensors are involved in the tracking process
and their energy consumption can be balanced. The whole network lifetime may be prolonged.

6. Performance evaluation

Performance evaluation is done through intensive simulation. NS-2 is the de facto general network simulator. However,
NS-2 does not work well for large topologies (more than 300 nodes) and the built-in routing algorithms could be buggy
[15,28]. Since our goal is not to design a protocol, but to do a detailed study of tradeoff analysis between power consumption
and tracking quality, a simulator is developed specifically for our study to simulate the moving target tracking environment
and evaluate the proposed sensor scheduling scheme.

6.1. Simulation setup

Table 1 summarizes the system parameters and their settings. The network field is a square of size of 500 m � 500 m. We
use 100 sensor nodes with uniformly random distribution. The target appears in the field at a random location. We generate
target’s velocity with a Gaussian distribution. The average value is 20 m/s and the variance is 10 m/s. We adopt the sensor’s
Fig. 6. An example of Greedy-OCSA.



Table 1
System parameters and settings.

Parameter Setting

Number of sensor nodes 100
Initial energy at each sensor 0.1 KJ
Power consumption in sleeping mode 0.01 J
Energy consumption rate kl = 0.1, kt = 0.5
Epoch 20 time unit
Sensor sensing radius 80 m
Sensor transmission radius 80 m
Sensor network field 500 m � 500 m
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energy model described in the Section 3.3. The parameters can be estimated from battery characteristics. The initial energy
of a sensor is set to 0.1 KJ, which means this sensor has two 1.5 v batteries with 100 mAh capacity. Energy consumption rate
is set according to existing measurement.

In the simulation we consider the following tunable parameters:

� a, the least probability that the target is covered at next time. We use a–k-coverage method to decide the candidate sen-
sor set. We change a from 0.1 to 0.6 to study the effect of network coverage on target tracking quality. The initial value is
set to 0.2.
� b, the energy consumption weight for measuring the distance between sensor and target. Parameter b-depends on sen-

sor’s characteristics. Generally, sensor’s transmission range is more than its sensing range. For different sensors, such as
infrared sensors and ultrasound sensors, b has different range because of different sensing ranges. Generally, passive
infrared sensor has less sensing range than other sensor, so b should increase to improve tracking accuracy. We change
b from 0.1 to 0.75 to study the effect of sensing range for different sensor’s characteristics on target tracking quality. The
initial value is set to 0.4.

Both Extended Kalman Filtering (EKF) (NL = 2) and maximum likelihood estimation (MLE) method (NL = 3) are utilized to
track moving target. We design an EKF using a state vector with four components, two position components (x,y) and two
velocity components (vx,vy). We found that in the initial phase the performance of EKF is bad, that’s because the performance
of EKF highly depends on history information, so we use MLE is to initialize and reset the Kalman filter. The result shows that
the combination of EKF and MLE is an appropriate approach. Fig. 7 shows the tracking result of a moving target using EKF and
MLE. It can be seen that the tracking quality can be accepted.

To find the target, at the very beginning of tracking task, we must wake up all sensor nodes. Since we focus on balancing
the energy consumption and tracking quality, we only record the data after the target is found. At this time, EKF is used to
track the target, so NL is set to 2. In the simulation, we generate 20 trajectories of moving target. For each trajectory, we sim-
ulate the tracking process 20 times.

6.2. Simulation results of probabilistic-based dynamic area coverage

First, we predict the possible moving area of target at next time point using the approximate approach proposed in
Section 4. Fig. 8 shows the prediction result of uncertainty ellipsoid in the state space. Our simulation experiment
sensor
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Fig. 7. A tracking result using EKF and MLE.
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Fig. 8. The uncertainty ellipsoids of the next state.
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demonstrates that prediction of the next location is not always accurate. However, the location of target at next time point
always falls into our predicted moving area. Based on our simulation, the ratio that the target gets into the predicted moving
area is 100%.

Then, a candidate sensor set S can be decided using a–k-coverage method. In our simulation, k is set to 6. Fig. 9 shows an
example of 0.3–6-coverage, where a = 0.3, k = 6. The solid circles with different colors represent the sensing area of sensors
that have 0.3-coverage on the target moving area (the ellipsoid drawn with dotted line).

It is an interest problem that how much history information is needed to predict the possible moving area of target at
next time point when the scheduling algorithm is performed in general sensor node. When a leader sensor has no enough
information to predict the next moving area, it can send request message to sink node and get enough information from sink
node, it can also broadcast request message to its neighbors and get former tracking information within h hops range. The
hop number h can be decided through communication distance, measurement distance and the acreage of target region. In
our simulation, we adopt the latter method and set h to 3. It is because getting the information from neighbor nodes may be
more time-efficient than getting information from sink node. Additionally, sink node may become bottleneck if we use the
former method. How to set h value to get more information with less overhead may be an interesting problem needing fur-
ther research.
6.3. Simulation results of sensor scheduling

In order to evaluate the performance of Greedy-OCSA and compare Greedy-OCSA to existing schemes, we have both
implemented Greedy-OCSA approach and CGS [5]. The motivation of CGS is similar to ours. This is the reason why we choose
CGS. Instead of developing a totally new effective tracking algorithm, we focus on achieving better tradeoff between power
consumption and quality of surveillance through moving area prediction and coverage-based sensor selection. In order to
demonstrate the advantage of combining a–k-coverage and Greedy-OCSA, we also compare our approach with k-coverage
and k-coverage with Greedy-OCSA.

As shown in Fig. 10, k-coverage approach causes the largest number of sensors in tracking mode since k sensors are
selected in every step. CGS and k-coverage with Greedy-OCSA can reduce the number of tracking sensors by adopting certain
scheduling schemes. Our proposed approach uses the smallest number of sensors for tracking. The average value is 3.75,
Fig. 9. a–k-Coverage.



Fig. 10. The number of sensors in tracking mode.
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a 15% improvement compared with CGS and a 3% improvement compared with k-coverage with Greedy-OCSA. It is because
our approach has a biggest candidate set for optimizing sensor selection thankful to a–k-coverage.

Generally, less sensors are active, more energy is saved. However, the number of active sensors cannot tell the detail
energy dissipation. For example, if a sensor is always active, it exhausts its energy soon. This will cause energy hole and make
the whole sensor network fails. Besides number of active sensors, we also estimate the average and lowest value of residual
energy ratio to describe the energy consumption.

As shown in Fig. 11, the average residual energy ratio reflects the trend that less tracking sensors cause less energy con-
sumption. This is the reason why k-coverage leads to the highest energy-consumption. Our approach is still the best one.
Although the difference is not very significant, our approach get 5% gain compared with k-coverage with Greedy-OCSA,
6% gain compared with CGS and 8% gain compared with k-coverage.

The lowest residual energy ratio given in Fig. 12 tell us serious unbalanced energy consumption will happen without
proper scheduling schemes. With k-coverage, a sensor consumes 60% energy in the worst case. It means some sensors
may exhaust their energy quickly and leads to energy hole, which ultimately causes the whole sensor network fail. By using
Greedy-OCSA, k-coverage with Greedy-OCSA can reduce the largest energy consumption by 8%. CGS uses the probe-and-
sleep mechanism to make the worst consumption reduce 25%. The worst consumption ratio is only 0.35 in our approach.
It is because our approach selects the tracking sensors from the biggest candidate set.

Fig. 13 shows the tracking quality of these four approaches. The tracking quality is measured by error that indicates the
distances between true location and estimated location at each time point. It is given in the form of Mean Square Error (MSE).
It can be seen that k-coverage has the best performance in this metric. The reason is that k-coverage wakes up the largest
number of sensors to track target in these four approaches. It comes with the highest and unbalanced energy consumption.
The difference between k-coverage and our approach is not significant. Our approach does not miss the target at any time
point. The error is still in a reasonable level. And our approach is better than CGS and k-coverage Greedy-OCSA. The CGS
cause the highest error since its probing and sleeping does not consider the measuring and communicating cost. Instead
of randomly making some sensors sleeping, Greedy-OCSA implements close-form optimization of sensor selection.

The simulation results show that, with the same parameter settings, our approach performs better than CGS, k-coverage
and k-coverage with Greedy-OCSA. Our approach can get better trade-offs between energy consumption and tracking
quality.
Fig. 11. The average residual energy ratio.



Fig. 12. The lowest residual energy ratio.

Fig. 13. The tracking error.

K. Shi et al. / Information Sciences 292 (2015) 95–110 107
Since Greedy-OCSA is a close-form solution to binary linear optimal problem that may not find a global optimum, we also
use branch and cut approach [17] to solve this problem and compare their results. Since they both use probabilistic coverage
and share the same constraints, they get the same tracking qualities. Greedy-OCSA consumes more energy than branch and
cut as shown in Fig. 14, in which the average consumed energy ratio is used as the metric instead of the average residual
ratio used in the previous figure to show the performance difference more clearly. For example, in the first step, Greedy-
OCSA consumes 5% of the total energy, and branch and cut consumes 4.15% of the total energy. If residual energy ratio is
used, the result is 95% vs. 95.85%. This difference is too small to be shown clearly. The average difference between consumed
energy is 16%. In the early stage, when the nodes have more power, the Greedy-OCSA is 17% worse than branch and cut in
energy consumption. After that, when the nodes consumes a lot of power, the difference becomes less significant. The
Fig. 14. Comparison with branch and cut.
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consumed energy ratio of Greedy-OCSA is 16.4%, only 12% worse than the ratio of branch, 14.4%, in the last time stamp. It
proves OCSA-Greedy can reduce the energy consumption in an even manner to ease the impact of ‘‘energy hole’’ on the per-
formance. We will continue to improve the Greedy-OCSA in the future work.
6.4. Impacts of a and b

We also evaluate the performance of our approach by changing the parameter, a and b. Fig. 15 shows the impacts on the
tracking quality. It can be found that as a increases to certain value (in this example it is 0.2), the MSE tends to reduce. How-
ever, as a increases to greater value, the MSE tends to increase and the quality of tracking decreases. The reason for this is
that, as a increases, the coverage is more intensive, so that the candidate sensor set decided by a–k-coverage is closer to k-
coverage, and few sensors can be selected as candidates, which may lead to ‘‘energy hole’’. However, if a is too low, many
sensors including those that only have a little sensing coverage are also selected as candidates. This will degrade the perfor-
mance of Greedy-OCSA.

Fig. 15 also shows the effect of the energy consumption weight b on target tracking quality. In fact, parameter b reflects
the relation between sensor’s transmission range and its sensing range for different sensor’s characteristics. As shown in
Fig. 15, as b increases to greater value, the MSE increases. The reason for this is that when weight b increases, the sensing
range increases, similarly the sensor density increases, the more energy is consumed for measuring, so that some sensors
exhaust energy quickly, so the tracking quality descends. It is also obvious that when weight b decreases to small, the
MSE increases. The reason is that the sensing range decreases, there is no enough information to track target.

Fig. 16 shows the total energy consumption as parameters a and b are changed. As shown in Fig. 16, as a is small, the total
energy consumption of all sensors is at a relatively high level, as a increases to a greater value, the total energy consumption
reduces, but the MSE increases. The reason is that when a is small, more sensors are selected and awaked according to a–k-
coverage requirement. When a increases to a greater value even close to 1, a–k-coverage is approximately k-coverage, fewer
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sensors can meet requirement and be selected. Fig. 16 also shows that when a is small, variety of b has little effect on energy
consumption because that more sensors can be selected and most energy is consumed by communication. When a increases
to greater value, variety of b has big effect on energy consumption because that fewer sensors can be selected and the energy
consumption of measuring increases. It can be found that when a = 0.2, b = 0.4, there is good balance with MSE and energy
consumption.

To summaries, a–k-coverage means the moving area is covered by at least k sensors under at least a probability. With
high a value, the candidate set only contains few sensors close enough to the moving area. These sensors are always selected
to track. The energy consumption is not even. The tracking quality will drop quickly after these sensors exhaust their power.
If a is low, the candidate set becomes larger, more nodes can be selected to track and the energy consumption can be bal-
anced. However, some nodes that only cover a small part of moving area may be selected, which could compromise the
tracking quality and increase the energy cost. b reflects the relation between sensor’s transmission range and its sensing
range for different sensor’s characteristics. Larger b value suggests larger sensing area. If b is too low, the sensing area is
too small. The chance that detects and locates the target would be small too. If b is too high, the sensing area is bigger, which
is good for detecting and locating targets. However, the energy consumption will increase significantly and reduce the life-
time of sensor networks.

The simulation result shows the proposed algorithm can balance the tracking quality and energy consumption with
proper a and b value. We can get the small MSE with a reasonable energy consumption level. Thus, how to determine proper
a and b value based on tracking environments is very important, we will address this issue in the future study. To demon-
strate the feasibility of the proposed sensor scheduling algorithm, we are developing a prototype implementation for IMote2
Mote. Although this implementation is still in developing stage, the initial results are very positive. The average executing
time (the time for leader election and handover is not including) is only 1.1 s, and the maximum executing time does not
exceed 2 s. The average distance that targets move in this duration is only 30 m. We will continue this developing in future
work.

7. Conclusion and future work

In this paper, we propose a probabilistic coverage based sensor scheduling scheme for target tracking sensor network. In
this scheme, the possible moving area of target is predicted, and then a–k-coverage method is developed to guarantee that
area is covered by at least k sensors under at least a probability. Those k sensors construct a candidate sensor set for tracking.
The sensor scheduling problem is defined as finding a suitable sensor subset from the candidate set to balance the energy
consumption and tracking quality. This problem can be formalized as a binary linear problem, which is classified as NP-hard.
A heuristic algorithm, Greedy-OCSA, is proposed to solve this problem, which selects the sensors with the most residual
energy first in each time step, and then tries to reduce the energy cost by considering the other sensors with less residual
energy. Extensive simulations demonstrate the proposed sensor scheduling schemes can balance tracking quality and net-
work lifetime under a–k-coverage condition. A prototype implementation is in developing.

In our future work, we will continue to develop our prototype implementation and evaluate our approach in practical
environment. The issues such as optimizing the values of a and b, improving the performance of Greedy-OCSA, and deter-
mining the length of time step will also be addressed.

The source code of simulator is available for download:
http://keshi.iothust.org/simulation.html or
http://keshi.ubiwna.org/simulation.html.
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